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Abstract. We have developed an improved algorithm that allows us to enumerate the number of
self-avoiding polygons on the square lattice to perimeter length 90. Analysis of the resulting series
yields very accurate estimates of the connective congtaat 2.638 158 529 271) (biased) and

the critical exponent = 0.500 000%10) (unbiased). The critical point is indistinguishable from

a root of the polynomial 584" + 7x2 — 13 = 0. An asymptotic expansion for the coefficients is
given for alln. There is strong evidence for the absence of any non-analytic correction-to-scaling
exponent.

1. Introduction

A self-avoiding polygon (SAP) can be defined as a walk on a lattice which returns to the origin
and has no other self-intersections. The history and significance of this problem is nicely
discussed in [14]. Alternatively, we can define a SAP as a connected sub-graph (of a lattice)
whose vertices are of degree 0 or 2. Generally SAPs are considered distinct up to a translation,
so if there arep, SAPs of length: there are #p, walks (the factor of two arising since the
walk can go in two directions). The enumeration of SAPs on various lattices is an interesting
combinatorial problem in its own right, and is also of considerable importance in the statistical
mechanics of lattice models [14].

The basic problem is the calculation of the generating function

P(x) =) paux® ~ A(x) + B(x)(1 - x?/x2)*™ @
where the functiongt and B are believed to be regular in the vicinity af. We discuss this
pointfurther in section 3, as it pertains to the presence or otherwise of a non-analytic correction-
to-scaling term. Despite strenuous effort over the past 50 years or so this problem has not been
solved on any regular two-dimensional lattice. However, much progress has been made in the
study of various restricted classes of polygons and many problems have been solved exactly.
These include staircase polygons [26, 25, 5, 2, 20], convex polygons [5, 16, 12, 19], row-convex
polygons [2, 20], and almost convex polygons [21]. Also, for the hexagonal lattice the critical
point, x2 = 1/(2 + V2) as well as the critical exponent = % are known exactly [23, 1],
though non-rigorously. Very firm evidence exists from previous numerical work that the
exponenty is universal and thus equa%sfor all two-dimensional lattices [11, 9, 15]. Thus
the major remaining problem, short of an exact solution, is the calculatiap fofr various
lattices. Recently, the authors found a simple mapping between the generating function for
SAPs on the hexagonal lattice and the generating function for SAPs ¢B1128) lattice [15].
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Knowledge of the exact value foy on the hexagonal lattice resulted in the exact determination
of the critical point on thg3.12?) lattice.

In order to study this and related systems, when an exact solution cannot be found one
has to resort to numerical methods. For many problems the method of series expansions
is by far the most powerful method of approximation. For other problems Monte Carlo
methods are superior. For the analysisRyfx), series analysis is undoubtedly the most
appropriate choice. This method consists of calculating the first coefficients in the expansion
of the generating function. Given such a series, using the numerical technique known as
differential approximants [13], highly accurate estimates can frequently be obtained for the
critical point and exponents, as well as the location and critical exponents of possible non-
physical singularities.

This paper builds on the work of Enting [7] who enumerated square-lattice polygons to 38
steps using the finite-lattice method. Using the same technique this enumeration was extended
by Enting and Guttmann to 46 steps [8] and later to 56 steps [11]. Since then they extended
the enumeration to 70 steps in unpublished work. These extensions to the enumeration were
largely made possible by improved computer technology. In this work we have improved
the algorithm and extended the enumeration to 90 steps while using essentially the same
computational resources used to obtain polygons to 70 steps.

The difficulty in the enumeration of most interesting lattice problems is that,
computationally, they are of exponential complexity. It would be a great breakthrough if
a polynomial time algorithm could be found, while a linear time algorithm is, to all intents
and purposes, equivalent to an exact solution. Initial efforts at computer enumeration of
square-lattice polygons were based on direct counting. The computational complexity was
proportional to\], wheren is the length of the polygon, and = 1/x. ~ 2.638. The dramatic
improvement achieved [7] by the finite-lattice method can be seen from its complexity, which
is proportional tor}, wherei, = 3: ~ 1.316. Our new algorithm, described below, has
reduced both time and storage requirements by virtue of a complexity which is proportional to
A3, whereiz ~ 1.20. Itis worth noting that for simpler restricted cases it possible to devise
much more efficient algorithms. For problems such as the enumeration of convex polygons
[12] and almost-convex polygons [10, 22] the algorithms are of polynomial complexity. Other
interesting and related problems for which efficient transfer matrix algorithms can be devised
include Hamiltonian circuits on rectangular strips (or other compact shapes) [17] and self-
avoiding random walks [6, 4].

In the next section we will very briefly review the finite-lattice method for enumerating
square-lattice polygons and give some details of the improved algorithm. The results of the
analysis of the series are presented in section 3 including a detailed discussion of a conjecture
for the exact critical point.

2. Enumeration of polygons

The method used to enumerate SAP on the square lattice is an enhancement of the method
devised by Enting [7] in his pioneering work. The first terms in the series for the polygon-
generating function can be calculated using transfer matrix techniques to count the number of
polygons in rectangle® + 1 edges wide anfl + 1 edges long. The transfer matrix technique
involves drawing a line through the rectangle intersecting a sé¥ ef 2 edges. For each
configuration of occupied or empty edges along the intersection we maintain a (perimeter)
generating function for loops to the left of the line cutting the intersection in that particular
pattern. Polygons in a given rectangle are enumerated by moving the intersection so as to add
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b Figure 1. A snapshot of the intersection (dashed line) during
the transfer matrix calculation on the square lattice. Polygons are
enumerated by successive moves of the kink in the intersection, as
exemplified by the position given by the dotted line, so that one vertex
at a time is added to the rectangle. To the left of the intersection we
have drawn an example of a partially completed polygon.

one vertex at a time, as shown in figure 1. The allowed configurations along the intersection
are described in [7]. Each configuration can be represented by an ordered set of edge states
{n;}, where

0 empty edge
n=11 lower part of loop closed to the left (2
2 upper part of loop closed to the left.

Configurations are read from the bottom to the top. So the configuration along the intersection
of the polygon in figure 1i$0112122.

The rules for updating the partial generating functions as the intersection is moved are
identical to the original work, so we refer the interested reader to [ 7] for further details regarding
this aspect of the transfer matrix calculation.

Due to the obvious symmetry of the lattice one need only consider rectangles witiv .

Valid polygons were required to span the enclosing rectangle in the lengthwise direction. Soitis
clear that polygons with projection on theaxis< W, thatis polygons which are narrower than

the width of the rectangle, are counted many times. Itis however easy to obtain the polygons of
width exactlyW and length exactly. from this enumeration [7]. Any polygon spanning such

a rectangle has a perimeter of length at leg® 2 L). By adding the contributions from all
rectangles of widthV < Wpax (Where the choice dVi.x depends on available computational
resources, as discussed below) and lefigth L < 2Wnax— W + 1, with contributions from
rectangles witl, > W counted twice, the number of polygons per vertex of an infinite lattice

is obtained correctly up to perimeteWs .« + 2.

The major improvement of the method used to enumerate polygons in this paper is that
we require valid polygons to span the rectanglbathdirections. In other words we directly
enumerate polygons of width exacty and lengthL rather than polygons of widtkk W
and lengthL as was done originally. The only drawback of this approach is that for most
configurations we have to use four distinct generating functions since the partially completed
polygon could have reached neither, both, the lower, or the upper boundaries of the rectangle.
The major advantage is that the memory requirement of the algorithm is exponentially smaller.

Realizing the full savings in memory usage requires two enhancements to the original
algorithm. Firstly, for each configuration we must keep track of the current minimum number
of stepsiNc,r that have been inserted to the left of the intersection in order to build up that
particular configuration. Secondly, we calculate the minimum number of additionaléigps
required to produce a valid polygon. There are three contributions, namely the number of steps
required to close the polygon, the number of steps needed (if any) to ensure that the polygon
touches both the lower and upper boundary, and finally the number of steps needed (if any)
to extend at leas edges in the lengthwise direction. If the sWgyr + Nagd > 4Wmax + 2
we can discard the partial generating function for that configuration because it will not make
a contribution to the polygon count up to the perimeter lengths we are trying to obtain. For
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Figure 2. Examples of partially generated polygons (thick solid lines) to the left of the intersection
(dashed line) and how to close them in a valid way (thick wavy line). Upper-left panel shows how
to close the configuratioffl2112212. The upper-middle and right panels show the two possible
closures of the configuratioid1112222. The lower panels show the three possible closures of the
configuration{11121222.

instance, polygons spanning a rectangle with a width clo8&tg have to be almost convex, so
very convoluted polygons are not possible. Thus configurations with many loop ends (non-zero
entries) make no contribution at perimeter lengtdWax + 2.

The number of steps needed to ensure a spanning polygon is straightforward to calculate.
The complicated part of the new approach is the algorithm to calculate the number of steps
required to close the polygon. There are very many special cases depending on the position of
the kink in the intersection and whether or not the partially completed polygon has reached the
upper or lower boundary of the bounding rectangle. So in the following we will only briefly
describe some of the simple contributions to the closing of a polygon. Firstly, if the partial
polygon contains separate pieces these have to be connected as illustrated in figure 2. Separate
pieces are easy to locate since all we have to do is start at the bottom of the intersection and
moving upwards we count the number of 1's and 2’s in the configuration. Whenever these
numbers are equal a separate piece has been found and (provided one is not at the last edge in
the configuration) the currently encountered 2-edge can be connected to the next 1-edge above.
Nagqis incremented by the number of steps (the distance) between the edges and the two edge-
states are removed from the configuration before further processing. It is a little less obvious
that if the configuration start (end) &s12. ..2} ({1...122}) the two lower (upper) edges can
safely be connected (note that there can be any number of 0's interspersed befaje fgain
Naqq is incremented by the number of steps between the edges, and the two edge-states are
removed from the configuration—leading to the new configuratd®i. .. 2} ({1...200)—
before further processing. After these operations we may be left with a configuration which has
just one 1- and one 2-edge, in which case we are done since these two edges can be connected
to form a valid polygon. This is illustrated in figure 2 where the upper-left panel shows how
to close the partial polygon with the intersectig®2112212, which contains three separate
pieces. After connecting these pieces we are left with the configurgt@d12002. We now
connect the two 1-edges and note that the first 2-edge is relabelled to a 1-edge (it has become
the new lower end of the loop). Thus we get the configuraf@®001002 and we can now
connect the remaining two edges and end up with a valid completed polygon. Note that in the
last two cases, in addition to the steps spanning the distance between the edges, an additional
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10° . . . .
107
108 F
10° F

10% F 3
10° b 3
100 F 3
10} ]
Lo | | | | ] Figure 3. The number of configurations required as
0 ) 10 15 20 25  Wmaxisincreased. The straight line corresponds to a
Winax growth factor = 2.

two horizontal steps had to be added in order to form a valid loop around the intervening edges.

If the transformation above does not result in a closed polygon we must have a configuration

of the form{111...222. The difficulty lies in finding the way to close such configurations

with the smallest possible number of additional steps. Suffice to say that if the number of
non-zero entries is small one can easily devise an algorithm to try all possible valid ways of
closing a polygon and thus find the minimum number of additional steps. In figure 2 we show

all possible ways of closing polygons with eight non-zero entries. Note that we have shown
the generic cases here. In actual cases there could be any number of 0-edges interspersed in the
configurations and this would determine which way of closing would require the least number

of additional steps.

With the original algorithm the number of configurations requiretagy increased grew
asymptotically as % [11]. Our enumerations indicate that the computational complexity is
reduced significantly. While the number of configurations still grows exponentially’as
the value of: is reduced fromk. = 3 toA ~ 2 with the improved algorithm (figure 3 shows the
number of configuration required &8&:,.x increases). Furthermore, for aiy we know that
contributions will start at W since the smallest polygons have to spa# & W rectangle. So
for each configuration we need only retaifi¥,.x— W) + 2 terms of the generating functions
while in the original algorithm contributions started & Dbecause the polygons were required
to span only in the lengthwise direction. We also note that on the square lattice all SAPs are
of even length so for each configuration every other term in the generating function is zero,
which allows us to discard half the terms and retain only the non-zero ones.

Finally, a few remarks of a more technical nature. The number of contributing
configurations becomes very sparse in the total set of possible states along the boundary line
and as is standard in such cases one uses a hash-addressing scheme [24]. Since the integer
coefficients occurring in the series expansion become very large, the calculation was performed
using modular arithmetic [18]. This involves performing the calculation modulo various prime
numbersp; and then reconstructing the full integer coefficients at the end. In order to save
memory we used primes of the forpp = 25 —r; so that the residues of the coefficients in the
polynomials could be stored using 16 bit integers. The Chinese remainder theorem ensures
that any integer has a unique representation in terms of residues. If the largest absolute values
occurring in the final expansion is, then we have to use a number of primkesuch that
pip2...pr/2 > m. Up to eight primes were needed to represent the coefficients correctly.

Combining all the memory minimization tricks mentioned above allows us to extend the
series for the square-lattice polygon generating function from 70 to 90 terms using at most 2 Gb
of memory. Obtaining a series this long with the original algorithm would have required at
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Table 1. The numbery,, of embeddings oi-step polygons on the square lattice. Only non-zero
terms are listed.

n Xp n Xn

58 59270905595010696944 76 1158018792676190545425711414

60 379108737793289505364 78 7554259214694 896127 239818088
62 2431560774079622817356 80 49360379260931 646965916677 280
64 15636142410456 687 798584 82 323028185951 187 646 733521902 740

66 100792521026 456 246 096640 84
68 651206027727 607 425003232 86
70 4216407618470423070733556 88
72 27355731801639 756123505014
74 177822806 050324 126 648 352460

2117118644744 425875029583096670
13895130612 692 826 326 409 919 713 700
91319729650588816 198 004 801 698 400
90 600931442 757555468862970353941700

Table 2. Estimates for the critical poinf® and exponent 2 « obtained from first- and second-order
inhomogeneous differential approximants (DA) to the series for square-lattice polygon-generating
function. L is the order of the inhomogeneous polynomial.

First-order DA Second-order DA

c

x2 2—«a 2

Xe

2—«

0 ~NO U WNPR| N~

0.143 680628 97(17)
0.143 680 629 02(14)
0.143 680 628 78(35)
0.143 680 629 10(29)
0.143 680 628 90(43)
0.143 680 628 63(49)
0.143 680 628 86(39)
0.143 680 628 85(64)

1.500 000 74(35)
1.500 000 68(26)
1.500 001 07(71)
1.500 000 38(61)
1.500 000 85(93)
1.500 001 4(10)

1.500 000 94(80)
1.500 000 8(13)

0.143 680 628 83(45)
0.143 680 629 43(29)
0.143 680 629 14(20)
0.143 680 629 14(16)
0.143 680629 11(53)
0.143 680 629 01(54)
0.143 680 628 81(52)
0.143 680 629 210(97)

1.500 000 92(92)
1.499 999 57(80)
1.500 000 34(51)
1.500 000 38(44)
1.500000 2(12)
1.5000005(12)
1.500 000 9(10)
1.500 000 21(24)

least 200 times as much memory, or close to half a terabyte! The calculations were performed
on an 8-node AlphaServer 8400 with a total of 8 Gb memory. The total CPU time required
was about a week per prime. Obviously the calculation for each width and prime are totally
independent and several calculations were done simultaneously.

In table 1 we have listed the new terms obtained in this work. They of course agree with
the terms up to length 70 computed using the old algorithm. The number of polygons of length
< 56 can be found in [11].

3. Analysis of the series

We analysed the series for the polygon generating function by the numerical method of
differential approximants [13]. In table 2 we have listed estimates for the critical point

x2 and exponent 2- « of the series for the square-lattice SAP generating function. The
estimates were obtained by averaging values obtained from first-drdar, [M] and second-

order [L/N; M; K] inhomogeneous differential approximants. For each odesf the
inhomogeneous polynomial we averaged over those approximants to the series which used
at least the first 35 terms of the series (that is, polygons of perimeter at least 74), and used
approximants such that the difference betw@énM, and K did not exceed two. These

are therefore ‘diagonal’ approximants. Some approximants were excluded from the averages
because the estimates were obviously spurious. The error quoted for these estimates reflects
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Figure 4. Estimates for the critical exponent2« versus estimates for the critical poirgt of the
square-lattice polygon-generating function.

the spread (basically one standard deviation) among the approximants. Note that these error
bounds shouldhot be viewed as a measure of the true error as they cannot include possible
systematic sources of error. We discuss further the systematic error when we consider biased
approximants. Based on these estimates we concludecfhat 0.1436806288) and
a = 0.5000005%10).

As stated earlier there is very convincing evidence that the critical expenest 1
exactly. If we assume this to be true we can obtain a refined estimate for the criticat foint
In figure 4 we have plotted estimates for the critical exponent2against estimates for the
critical pointx2. Each dot in this figure represents a pair of estimates obtained from a second-
order inhomogeneous differential approximant. The order of the inhomogeneous polynomial
was varied from 0 to 10. We observe that there is an almost linear relationship between the
estimates for 2- « andx? and that for 2- « = 3 we getx? ~ 0.14368062928... In
order to get some idea as to the effect of systematic errors, we carried out this analysis using
polygons of length up to 60 steps, then 70, then 80 and finally 90 steps. The results were
x2 = 0.143 6806308 forn = 60, x2 = 0.143 68062956 fon = 70,x? = 0.143 680 629 30
for n = 80, andx? = 0.143 680 629 28 fon = 90. This is a rapidly converging sequence of
estimates, though we have no theoretical basis that would enable us to assume any particular
rate of convergence. However, observing that the differences between successive estimates
are decreasing by a factor of at least five, it is not unreasonably optimistic to estimate the limit
atx? = 0.143 680629 27).

This leads to our final estimaké = 0.143 680629 271) and thus we find the connective
constantyu = 1/x, = 2.638 158 530 3dL0). It is interesting to note that some years ago we
[3] pointed out that since the hexagonal lattice connective constant is given by the zero of a
quadratic inx?, it is plausible that this might be the case also for the square-lattice connective
constant. On the basis of an estimate of the connective constant that was four orders of
magnitude less precise, we pointed out then that the polynomial

581+ 7x>—13=0

was the only polynomial we could find with ‘small’ integer coefficients consistent with our
estimate. The relevant zero of this polynomialxs = 0.1436806292698685.. in
complete agreement with our new estimate—which, as noted above, contains four more
significant digits! Unfortunately the other zero isxt = —0.1557288.., and we see

no evidence of such a singularity. Nevertheless, the agreement is so astonishingly good that
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we are happy to take this as a good algebraic approximation to the connective constant. An
argument as to why we might not expect to see the singularity on the negative real axis from
our series analysis would make the root of the above polynomial a plausible conjecture for the
exact value, but at present such an argument is missing.

Two further analyses were carried out on the data. Firstly, a study of the location of non-
physical singularities, and secondly, a study of the asymptotic form of the coefficients—which
is relevant to the identification of any correction-to-scaling exponent. Singularities outside
the radius of convergence give exponentially small contributions to the asymptotic form of
the coefficients, so are notoriously hard to analyse. Nevertheless, we see clear evidence of
a singularity on the negative real axisx ~ —0.40 with an exponent that is extremely
difficult to analyse but could be3, in agreement with the physical exponent. There is weaker
evidence of a further conjugate pair of singularities. First-order approximants locate these at
—0.015+ 0.36i, while second-order approximants locate thera-@035+ 0.31i. There is
also evidence of a further singularity on the negative real axi$ at —0.7. We are unable to
give a useful estimate of the exponents of these singularities.

We turn now to the asymptotic form of the coefficients. We have argued previously
[4] that there is no non-analytic correction-to-scaling exponent for the polygon generating
function. This is entirely consistent with Nienhuis’s [23] observation that there is a correction-
to-scaling exponent oA = g Since for the polygon-generating function exponent %
the correction term has an exponent equal to a positive integer, and therefore ‘folds into’ the
analytic background term, denoteédx) in equation (1). This is explained in greater detail
in [4]. We assert that the asymptotic form for the polygon-generating function is as given by
equation (1) above. In evidence of this, we remark that from (1) follows the asymptotic form

pgnxf” ~nfg[a1+a2/n+a3/n2+a4/n3+-~-]. €)

Using our algebraic approximation iQ quoted above, we show in table 3 the estimates of
the amplitudes:s, ..., as. From the table we see that ~ 0.0994018,a, ~ —0.027 51,
az ~ 0.0255 anduy ~ 0.12, where in all cases we expect the error to be confined to the last
quoted digit. The excellent convergence of all columns is strong evidence that the assumed
asymptotic form is correct. If we were missing a term corresponding to, say, a half-integer
correction, the fit would be far worse. This is explained at greater length in [4]. So good is
the fit to the data that if we take the last entry in the table, correspondimg=td@5, and use
the entries as the amplitudes, then. .. p1s are given exactly by the above asymptotic form
(provided we round to the nearest integer), and beyond perimeter 20 all coefficients are given
to the same accuracy as the leading amplitude.

Finally, to complete our analysis, we estimate the critical amplitutie$) and B(x?),
defined in equation (1) A(x?) has been estimated by evaluating ®agproximants to the
generating function, evaluated gt. In this way we estimatel (x?) ~ 0.036, while B(x?)

follows from the estimate aof; in equation (3), sinc@(x?) = Ls’,”“ ~ 0.234913.

4. Conclusion

We have presented an improved algorithm for the enumeration of SAPs on the square lattice.
The computational complexity of the algorithm is estimated to 12&. limplementing this
algorithm has enabled us to obtain polygons up to perimeter length 90. Decomposing
the coefficients into prime factors reveals frequent occurrence of very large prime factors,
supporting the widely held view that there is no ‘simple’ formula for the coefficients. For
example p7g contains the prime factor 7789 597 345 683 901 619. Our extended series enables
us to give an extremely precise estimate of the connective constant, and we give a simple
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Table 3. A fit to the asymptotic fornpz,,xf” ~n~3 [a1+az/n+az/n?+as/n+- - ]. Estimates
of the amplitudes, az, as, as.

n ai az as aq

20 0.09940085—-0.02745705 0.02476376 0.11822181
21 0.09940118-0.02747548 0.02511347 0.11601107
22 0.09940140-0.02748880 0.02537979 0.11423855
23 0.09940154-0.02749767 0.02556592 0.112937 66
24 0.09940164-0.02750397 0.02570426 0.11192457
25 0.09940170-0.02750829 0.02580364 0.11116357
26 0.09940174-0.02751137 0.02587757 0.11057283
27 0.09940177-0.02751355 0.02593211 0.11011880
28 0.09940179-0.02751510 0.02597236 0.10977030
29 0.09940180-0.02751619 0.02600168 0.10950667
30 0.09940181-0.02751694 0.02602273 0.10931043
31 0.09940182-0.02751745 0.02603734 0.10916929
32 0.09940182-0.02751777 0.02604692 0.10907354
33 0.09940182-0.02751795 0.02605254 0.10901552
34 0.09940182-0.02751802 0.02605500 0.10898929
35 0.09940182-0.02751802 0.02605494 0.10898993
36 0.09940182-0.02751796 0.02605285 0.10901358
37 0.09940182-0.02751785 0.02604913 0.109056 99
38 0.09940182-0.02751771 0.02604408 0.10911757
39 0.09940182-0.02751755 0.02603796 0.10919302
40 0.09940182-0.02751736 0.02603097 0.10928158
41 0.09940182-0.02751717 0.02602327 0.10938160
42 0.09940181-0.02751696 0.02601500 0.10949174
43 0.09940181-0.02751675 0.02600629 0.10961079
44 0.09940181-0.02751653 0.02599720 0.109 73796
45 0.09940181-0.02751631 0.02598785 0.10987195

algebraic approximation that agrees precisely with our numerical estimate. An alternative
analysis provides very strong evidence for the absence of any non-analytic correction terms
to the proposed asymptotic form for the generating function. Finally, we give an asymptotic
representation for the coefficients which we believe to be accurate for all positive integers.
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