
Self-avoiding polygons on the square lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 4867

(http://iopscience.iop.org/0305-4470/32/26/305)

Download details:

IP Address: 171.66.16.105

The article was downloaded on 02/06/2010 at 07:35

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/26
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gen.32 (1999) 4867–4876. Printed in the UK PII: S0305-4470(99)02204-0

Self-avoiding polygons on the square lattice

Iwan Jensen and Anthony J Guttmann
Department of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria
3052, Australia

Received 25 February 1999, in final form 30 April 1999

Abstract. We have developed an improved algorithm that allows us to enumerate the number of
self-avoiding polygons on the square lattice to perimeter length 90. Analysis of the resulting series
yields very accurate estimates of the connective constantµ = 2.638 158 529 27(1) (biased) and
the critical exponentα = 0.500 0005(10) (unbiased). The critical point is indistinguishable from
a root of the polynomial 581x4 + 7x2 − 13= 0. An asymptotic expansion for the coefficients is
given for alln. There is strong evidence for the absence of any non-analytic correction-to-scaling
exponent.

1. Introduction

A self-avoiding polygon (SAP) can be defined as a walk on a lattice which returns to the origin
and has no other self-intersections. The history and significance of this problem is nicely
discussed in [14]. Alternatively, we can define a SAP as a connected sub-graph (of a lattice)
whose vertices are of degree 0 or 2. Generally SAPs are considered distinct up to a translation,
so if there arepn SAPs of lengthn there are 2npn walks (the factor of two arising since the
walk can go in two directions). The enumeration of SAPs on various lattices is an interesting
combinatorial problem in its own right, and is also of considerable importance in the statistical
mechanics of lattice models [14].

The basic problem is the calculation of the generating function

P(x) =
∑
n

p2nx
2n ∼ A(x) +B(x)(1− x2/x2

c)
2−α (1)

where the functionsA andB are believed to be regular in the vicinity ofxc. We discuss this
point further in section 3, as it pertains to the presence or otherwise of a non-analytic correction-
to-scaling term. Despite strenuous effort over the past 50 years or so this problem has not been
solved on any regular two-dimensional lattice. However, much progress has been made in the
study of various restricted classes of polygons and many problems have been solved exactly.
These include staircase polygons [26, 25, 5, 2, 20], convex polygons [5, 16, 12, 19], row-convex
polygons [2, 20], and almost convex polygons [21]. Also, for the hexagonal lattice the critical
point, x2

c = 1/(2 +
√

2) as well as the critical exponentα = 1
2 are known exactly [23, 1],

though non-rigorously. Very firm evidence exists from previous numerical work that the
exponentα is universal and thus equals12 for all two-dimensional lattices [11, 9, 15]. Thus
the major remaining problem, short of an exact solution, is the calculation ofxc for various
lattices. Recently, the authors found a simple mapping between the generating function for
SAPs on the hexagonal lattice and the generating function for SAPs on the(3.122) lattice [15].

0305-4470/99/264867+10$30.00 © 1999 IOP Publishing Ltd 4867

4868 I Jensen and A J Guttmann

Knowledge of the exact value forxc on the hexagonal lattice resulted in the exact determination
of the critical point on the(3.122) lattice.

In order to study this and related systems, when an exact solution cannot be found one
has to resort to numerical methods. For many problems the method of series expansions
is by far the most powerful method of approximation. For other problems Monte Carlo
methods are superior. For the analysis ofP(x), series analysis is undoubtedly the most
appropriate choice. This method consists of calculating the first coefficients in the expansion
of the generating function. Given such a series, using the numerical technique known as
differential approximants [13], highly accurate estimates can frequently be obtained for the
critical point and exponents, as well as the location and critical exponents of possible non-
physical singularities.

This paper builds on the work of Enting [7] who enumerated square-lattice polygons to 38
steps using the finite-lattice method. Using the same technique this enumeration was extended
by Enting and Guttmann to 46 steps [8] and later to 56 steps [11]. Since then they extended
the enumeration to 70 steps in unpublished work. These extensions to the enumeration were
largely made possible by improved computer technology. In this work we have improved
the algorithm and extended the enumeration to 90 steps while using essentially the same
computational resources used to obtain polygons to 70 steps.

The difficulty in the enumeration of most interesting lattice problems is that,
computationally, they are of exponential complexity. It would be a great breakthrough if
a polynomial time algorithm could be found, while a linear time algorithm is, to all intents
and purposes, equivalent to an exact solution. Initial efforts at computer enumeration of
square-lattice polygons were based on direct counting. The computational complexity was
proportional toλn1, wheren is the length of the polygon, andλ1 = 1/xc ≈ 2.638. The dramatic
improvement achieved [7] by the finite-lattice method can be seen from its complexity, which
is proportional toλn2, whereλ2 = 3

1
4 ≈ 1.316. Our new algorithm, described below, has

reduced both time and storage requirements by virtue of a complexity which is proportional to
λn3, whereλ3 ≈ 1.20. It is worth noting that for simpler restricted cases it possible to devise
much more efficient algorithms. For problems such as the enumeration of convex polygons
[12] and almost-convex polygons [10, 22] the algorithms are of polynomial complexity. Other
interesting and related problems for which efficient transfer matrix algorithms can be devised
include Hamiltonian circuits on rectangular strips (or other compact shapes) [17] and self-
avoiding random walks [6, 4].

In the next section we will very briefly review the finite-lattice method for enumerating
square-lattice polygons and give some details of the improved algorithm. The results of the
analysis of the series are presented in section 3 including a detailed discussion of a conjecture
for the exact critical point.

2. Enumeration of polygons

The method used to enumerate SAP on the square lattice is an enhancement of the method
devised by Enting [7] in his pioneering work. The first terms in the series for the polygon-
generating function can be calculated using transfer matrix techniques to count the number of
polygons in rectanglesW + 1 edges wide andL + 1 edges long. The transfer matrix technique
involves drawing a line through the rectangle intersecting a set ofW + 2 edges. For each
configuration of occupied or empty edges along the intersection we maintain a (perimeter)
generating function for loops to the left of the line cutting the intersection in that particular
pattern. Polygons in a given rectangle are enumerated by moving the intersection so as to add

Self-avoiding polygons on the square lattice 4869

Figure 1. A snapshot of the intersection (dashed line) during
the transfer matrix calculation on the square lattice. Polygons are
enumerated by successive moves of the kink in the intersection, as
exemplified by the position given by the dotted line, so that one vertex
at a time is added to the rectangle. To the left of the intersection we
have drawn an example of a partially completed polygon.

one vertex at a time, as shown in figure 1. The allowed configurations along the intersection
are described in [7]. Each configuration can be represented by an ordered set of edge states
{ni}, where

ni =

0 empty edge

1 lower part of loop closed to the left

2 upper part of loop closed to the left.

(2)

Configurations are read from the bottom to the top. So the configuration along the intersection
of the polygon in figure 1 is{0112122}.

The rules for updating the partial generating functions as the intersection is moved are
identical to the original work, so we refer the interested reader to [7] for further details regarding
this aspect of the transfer matrix calculation.

Due to the obvious symmetry of the lattice one need only consider rectangles withL > W .
Valid polygons were required to span the enclosing rectangle in the lengthwise direction. So it is
clear that polygons with projection on they-axis< W , that is polygons which are narrower than
the width of the rectangle, are counted many times. It is however easy to obtain the polygons of
width exactlyW and length exactlyL from this enumeration [7]. Any polygon spanning such
a rectangle has a perimeter of length at least 2(W + L). By adding the contributions from all
rectangles of widthW 6 Wmax (where the choice ofWmax depends on available computational
resources, as discussed below) and lengthW 6 L 6 2Wmax−W + 1, with contributions from
rectangles withL > W counted twice, the number of polygons per vertex of an infinite lattice
is obtained correctly up to perimeter 4Wmax + 2.

The major improvement of the method used to enumerate polygons in this paper is that
we require valid polygons to span the rectangle inbothdirections. In other words we directly
enumerate polygons of width exactlyW and lengthL rather than polygons of width6 W

and lengthL as was done originally. The only drawback of this approach is that for most
configurations we have to use four distinct generating functions since the partially completed
polygon could have reached neither, both, the lower, or the upper boundaries of the rectangle.
The major advantage is that the memory requirement of the algorithm is exponentially smaller.

Realizing the full savings in memory usage requires two enhancements to the original
algorithm. Firstly, for each configuration we must keep track of the current minimum number
of stepsNcur that have been inserted to the left of the intersection in order to build up that
particular configuration. Secondly, we calculate the minimum number of additional stepsNadd

required to produce a valid polygon. There are three contributions, namely the number of steps
required to close the polygon, the number of steps needed (if any) to ensure that the polygon
touches both the lower and upper boundary, and finally the number of steps needed (if any)
to extend at leastW edges in the lengthwise direction. If the sumNcur + Nadd > 4Wmax + 2
we can discard the partial generating function for that configuration because it will not make
a contribution to the polygon count up to the perimeter lengths we are trying to obtain. For

4870 I Jensen and A J Guttmann

Figure 2. Examples of partially generated polygons (thick solid lines) to the left of the intersection
(dashed line) and how to close them in a valid way (thick wavy line). Upper-left panel shows how
to close the configuration{12112212}. The upper-middle and right panels show the two possible
closures of the configuration{11112222}. The lower panels show the three possible closures of the
configuration{11121222}.

instance, polygons spanning a rectangle with a width close toWmaxhave to be almost convex, so
very convoluted polygons are not possible. Thus configurations with many loop ends (non-zero
entries) make no contribution at perimeter length6 4Wmax + 2.

The number of steps needed to ensure a spanning polygon is straightforward to calculate.
The complicated part of the new approach is the algorithm to calculate the number of steps
required to close the polygon. There are very many special cases depending on the position of
the kink in the intersection and whether or not the partially completed polygon has reached the
upper or lower boundary of the bounding rectangle. So in the following we will only briefly
describe some of the simple contributions to the closing of a polygon. Firstly, if the partial
polygon contains separate pieces these have to be connected as illustrated in figure 2. Separate
pieces are easy to locate since all we have to do is start at the bottom of the intersection and
moving upwards we count the number of 1’s and 2’s in the configuration. Whenever these
numbers are equal a separate piece has been found and (provided one is not at the last edge in
the configuration) the currently encountered 2-edge can be connected to the next 1-edge above.
Nadd is incremented by the number of steps (the distance) between the edges and the two edge-
states are removed from the configuration before further processing. It is a little less obvious
that if the configuration start (end) as{112. . .2} ({1 . . .122}) the two lower (upper) edges can
safely be connected (note that there can be any number of 0’s interspersed before the. . .). Again
Nadd is incremented by the number of steps between the edges, and the two edge-states are
removed from the configuration—leading to the new configuration{001. . .2} ({1 . . .200})—
before further processing. After these operations we may be left with a configuration which has
just one 1- and one 2-edge, in which case we are done since these two edges can be connected
to form a valid polygon. This is illustrated in figure 2 where the upper-left panel shows how
to close the partial polygon with the intersection{12112212}, which contains three separate
pieces. After connecting these pieces we are left with the configuration{10012002}. We now
connect the two 1-edges and note that the first 2-edge is relabelled to a 1-edge (it has become
the new lower end of the loop). Thus we get the configuration{00001002} and we can now
connect the remaining two edges and end up with a valid completed polygon. Note that in the
last two cases, in addition to the steps spanning the distance between the edges, an additional

Self-avoiding polygons on the square lattice 4871

Figure 3. The number of configurations required as
Wmax is increased. The straight line corresponds to a
growth factorλ = 2.

two horizontal steps had to be added in order to form a valid loop around the intervening edges.
If the transformation above does not result in a closed polygon we must have a configuration
of the form{111. . .222}. The difficulty lies in finding the way to close such configurations
with the smallest possible number of additional steps. Suffice to say that if the number of
non-zero entries is small one can easily devise an algorithm to try all possible valid ways of
closing a polygon and thus find the minimum number of additional steps. In figure 2 we show
all possible ways of closing polygons with eight non-zero entries. Note that we have shown
the generic cases here. In actual cases there could be any number of 0-edges interspersed in the
configurations and this would determine which way of closing would require the least number
of additional steps.

With the original algorithm the number of configurations required asWmax increased grew
asymptotically as 3Wmax [11]. Our enumerations indicate that the computational complexity is
reduced significantly. While the number of configurations still grows exponentially asλWmax

the value ofλ is reduced fromλ = 3 toλ ' 2 with the improved algorithm (figure 3 shows the
number of configuration required asWmax increases). Furthermore, for anyW we know that
contributions will start at 4W since the smallest polygons have to span aW ×W rectangle. So
for each configuration we need only retain 4(Wmax−W)+ 2 terms of the generating functions
while in the original algorithm contributions started at 2W because the polygons were required
to span only in the lengthwise direction. We also note that on the square lattice all SAPs are
of even length so for each configuration every other term in the generating function is zero,
which allows us to discard half the terms and retain only the non-zero ones.

Finally, a few remarks of a more technical nature. The number of contributing
configurations becomes very sparse in the total set of possible states along the boundary line
and as is standard in such cases one uses a hash-addressing scheme [24]. Since the integer
coefficients occurring in the series expansion become very large, the calculation was performed
using modular arithmetic [18]. This involves performing the calculation modulo various prime
numberspi and then reconstructing the full integer coefficients at the end. In order to save
memory we used primes of the formpi = 215− ri so that the residues of the coefficients in the
polynomials could be stored using 16 bit integers. The Chinese remainder theorem ensures
that any integer has a unique representation in terms of residues. If the largest absolute values
occurring in the final expansion ism, then we have to use a number of primesk such that
p1p2 . . . pk/2> m. Up to eight primes were needed to represent the coefficients correctly.

Combining all the memory minimization tricks mentioned above allows us to extend the
series for the square-lattice polygon generating function from 70 to 90 terms using at most 2 Gb
of memory. Obtaining a series this long with the original algorithm would have required at

4872 I Jensen and A J Guttmann

Table 1. The number,xn, of embeddings ofn-step polygons on the square lattice. Only non-zero
terms are listed.

n xn n xn

58 59 270 905 595 010 696 944 76 1 158 018 792 676 190 545 425 711 414
60 379 108 737 793 289 505 364 78 7 554 259 214 694 896 127 239 818 088
62 2 431 560 774 079 622 817 356 80 49 360 379 260 931 646 965 916 677 280
64 15 636 142 410 456 687 798 584 82 323 028 185 951 187 646 733 521 902 740
66 100 792 521 026 456 246 096 640 84 2 117 118 644 744 425 875 029 583 096 670
68 651 206 027 727 607 425 003 232 86 13 895 130 612 692 826 326 409 919 713 700
70 4 216 407 618 470 423 070 733 556 88 91 319 729 650 588 816 198 004 801 698 400
72 27 355 731 801 639 756 123 505 014 90 600 931 442 757 555 468 862 970 353 941 700
74 177 822 806 050 324 126 648 352 460

Table 2. Estimates for the critical pointx2
c and exponent 2−α obtained from first- and second-order

inhomogeneous differential approximants (DA) to the series for square-lattice polygon-generating
function.L is the order of the inhomogeneous polynomial.

First-order DA Second-order DA

L x2
c 2− α x2

c 2− α
1 0.143 680 628 97(17) 1.500 000 74(35) 0.143 680 628 83(45) 1.500 000 92(92)
2 0.143 680 629 02(14) 1.500 000 68(26) 0.143 680 629 43(29) 1.499 999 57(80)
3 0.143 680 628 78(35) 1.500 001 07(71) 0.143 680 629 14(20) 1.500 000 34(51)
4 0.143 680 629 10(29) 1.500 000 38(61) 0.143 680 629 14(16) 1.500 000 38(44)
5 0.143 680 628 90(43) 1.500 000 85(93) 0.143 680 629 11(53) 1.500 000 2(12)
6 0.143 680 628 63(49) 1.500 001 4(10) 0.143 680 629 01(54) 1.500 000 5(12)
7 0.143 680 628 86(39) 1.500 000 94(80) 0.143 680 628 81(52) 1.500 000 9(10)
8 0.143 680 628 85(64) 1.500 000 8(13) 0.143 680 629 210(97) 1.500 000 21(24)

least 200 times as much memory, or close to half a terabyte! The calculations were performed
on an 8-node AlphaServer 8400 with a total of 8 Gb memory. The total CPU time required
was about a week per prime. Obviously the calculation for each width and prime are totally
independent and several calculations were done simultaneously.

In table 1 we have listed the new terms obtained in this work. They of course agree with
the terms up to length 70 computed using the old algorithm. The number of polygons of length
6 56 can be found in [11].

3. Analysis of the series

We analysed the series for the polygon generating function by the numerical method of
differential approximants [13]. In table 2 we have listed estimates for the critical point
x2
c and exponent 2− α of the series for the square-lattice SAP generating function. The

estimates were obtained by averaging values obtained from first-order [L/N;M] and second-
order [L/N;M;K] inhomogeneous differential approximants. For each orderL of the
inhomogeneous polynomial we averaged over those approximants to the series which used
at least the first 35 terms of the series (that is, polygons of perimeter at least 74), and used
approximants such that the difference betweenN , M, andK did not exceed two. These
are therefore ‘diagonal’ approximants. Some approximants were excluded from the averages
because the estimates were obviously spurious. The error quoted for these estimates reflects

Self-avoiding polygons on the square lattice 4873

Figure 4. Estimates for the critical exponent 2− α versus estimates for the critical pointx2
c of the

square-lattice polygon-generating function.

the spread (basically one standard deviation) among the approximants. Note that these error
bounds shouldnot be viewed as a measure of the true error as they cannot include possible
systematic sources of error. We discuss further the systematic error when we consider biased
approximants. Based on these estimates we conclude thatx2

c = 0.143 680 6289(5) and
α = 0.500 0005(10).

As stated earlier there is very convincing evidence that the critical exponentα = 1
2

exactly. If we assume this to be true we can obtain a refined estimate for the critical pointx2
c .

In figure 4 we have plotted estimates for the critical exponent 2− α against estimates for the
critical pointx2

c . Each dot in this figure represents a pair of estimates obtained from a second-
order inhomogeneous differential approximant. The order of the inhomogeneous polynomial
was varied from 0 to 10. We observe that there is an almost linear relationship between the
estimates for 2− α andx2

c and that for 2− α = 3
2 we getx2

c ' 0.14 368 062 928. . . . In
order to get some idea as to the effect of systematic errors, we carried out this analysis using
polygons of length up to 60 steps, then 70, then 80 and finally 90 steps. The results were
x2
c = 0.143 680 6308 forn = 60,x2

c = 0.143 680 629 56 forn = 70,x2
c = 0.143 680 629 30

for n = 80, andx2
c = 0.143 680 629 28 forn = 90. This is a rapidly converging sequence of

estimates, though we have no theoretical basis that would enable us to assume any particular
rate of convergence. However, observing that the differences between successive estimates
are decreasing by a factor of at least five, it is not unreasonably optimistic to estimate the limit
atx2

c = 0.143 680 629 27(1).
This leads to our final estimatex2

c = 0.143 680 629 27(1) and thus we find the connective
constantµ = 1/xc = 2.638 158 530 34(10). It is interesting to note that some years ago we
[3] pointed out that since the hexagonal lattice connective constant is given by the zero of a
quadratic inx2, it is plausible that this might be the case also for the square-lattice connective
constant. On the basis of an estimate of the connective constant that was four orders of
magnitude less precise, we pointed out then that the polynomial

581x4 + 7x2 − 13= 0

was the only polynomial we could find with ‘small’ integer coefficients consistent with our
estimate. The relevant zero of this polynomial isx2

c = 0.143 680 629 269 8685. . . . in
complete agreement with our new estimate—which, as noted above, contains four more
significant digits! Unfortunately the other zero is atx2

c = −0.155 7288. . . , and we see
no evidence of such a singularity. Nevertheless, the agreement is so astonishingly good that

4874 I Jensen and A J Guttmann

we are happy to take this as a good algebraic approximation to the connective constant. An
argument as to why we might not expect to see the singularity on the negative real axis from
our series analysis would make the root of the above polynomial a plausible conjecture for the
exact value, but at present such an argument is missing.

Two further analyses were carried out on the data. Firstly, a study of the location of non-
physical singularities, and secondly, a study of the asymptotic form of the coefficients—which
is relevant to the identification of any correction-to-scaling exponent. Singularities outside
the radius of convergence give exponentially small contributions to the asymptotic form of
the coefficients, so are notoriously hard to analyse. Nevertheless, we see clear evidence of
a singularity on the negative real axis atx2 ≈ −0.40 with an exponent that is extremely
difficult to analyse but could be 1.5, in agreement with the physical exponent. There is weaker
evidence of a further conjugate pair of singularities. First-order approximants locate these at
−0.015± 0.36i, while second-order approximants locate them at−0.035± 0.31i. There is
also evidence of a further singularity on the negative real axis atx2

c = −0.7. We are unable to
give a useful estimate of the exponents of these singularities.

We turn now to the asymptotic form of the coefficients. We have argued previously
[4] that there is no non-analytic correction-to-scaling exponent for the polygon generating
function. This is entirely consistent with Nienhuis’s [23] observation that there is a correction-
to-scaling exponent of1 = 3

2. Since for the polygon-generating function exponentα = 1
2,

the correction term has an exponent equal to a positive integer, and therefore ‘folds into’ the
analytic background term, denotedA(x) in equation (1). This is explained in greater detail
in [4]. We assert that the asymptotic form for the polygon-generating function is as given by
equation (1) above. In evidence of this, we remark that from (1) follows the asymptotic form

p2nx
2n
c ∼ n−

5
2 [a1 + a2/n + a3/n

2 + a4/n
3 + · · ·]. (3)

Using our algebraic approximation toxc quoted above, we show in table 3 the estimates of
the amplitudesa1, . . . , a4. From the table we see thata1 ≈ 0.099 4018,a2 ≈ −0.027 51,
a3 ≈ 0.0255 anda4 ≈ 0.12, where in all cases we expect the error to be confined to the last
quoted digit. The excellent convergence of all columns is strong evidence that the assumed
asymptotic form is correct. If we were missing a term corresponding to, say, a half-integer
correction, the fit would be far worse. This is explained at greater length in [4]. So good is
the fit to the data that if we take the last entry in the table, corresponding ton = 45, and use
the entries as the amplitudes, thenp4 . . . p16 are given exactly by the above asymptotic form
(provided we round to the nearest integer), and beyond perimeter 20 all coefficients are given
to the same accuracy as the leading amplitude.

Finally, to complete our analysis, we estimate the critical amplitudesA(x2
c) andB(x2

c),
defined in equation (1).A(x2

c) has been estimated by evaluating Padé approximants to the
generating function, evaluated atx2

c . In this way we estimateA(x2
c) ≈ 0.036, whileB(x2

c)

follows from the estimate ofa1 in equation (3), sinceB(x2
c) = 4

√
πa1

3 ≈ 0.234 913.

4. Conclusion

We have presented an improved algorithm for the enumeration of SAPs on the square lattice.
The computational complexity of the algorithm is estimated to be 1.2n. Implementing this
algorithm has enabled us to obtain polygons up to perimeter length 90. Decomposing
the coefficients into prime factors reveals frequent occurrence of very large prime factors,
supporting the widely held view that there is no ‘simple’ formula for the coefficients. For
example,p78 contains the prime factor 7789 597 345 683 901 619. Our extended series enables
us to give an extremely precise estimate of the connective constant, and we give a simple

Self-avoiding polygons on the square lattice 4875

Table 3. A fit to the asymptotic formp2nx
2n
c ∼ n−

5
2 [a1 + a2/n + a3/n

2 + a4/n
3 + · · ·]. Estimates

of the amplitudesa1, a2, a3, a4.

n a1 a2 a3 a4

20 0.099 400 85−0.027 457 05 0.024 763 76 0.118 221 81
21 0.099 401 18−0.027 475 48 0.025 113 47 0.116 011 07
22 0.099 401 40−0.027 488 80 0.025 379 79 0.114 238 55
23 0.099 401 54−0.027 497 67 0.025 565 92 0.112 937 66
24 0.099 401 64−0.027 503 97 0.025 704 26 0.111 924 57
25 0.099 401 70−0.027 508 29 0.025 803 64 0.111 163 57
26 0.099 401 74−0.027 511 37 0.025 877 57 0.110 572 83
27 0.099 401 77−0.027 513 55 0.025 932 11 0.110 118 80
28 0.099 401 79−0.027 515 10 0.025 972 36 0.109 770 30
29 0.099 401 80−0.027 516 19 0.026 001 68 0.109 506 67
30 0.099 401 81−0.027 516 94 0.026 022 73 0.109 310 43
31 0.099 401 82−0.027 517 45 0.026 037 34 0.109 169 29
32 0.099 401 82−0.027 517 77 0.026 046 92 0.109 073 54
33 0.099 401 82−0.027 517 95 0.026 052 54 0.109 015 52
34 0.099 401 82−0.027 518 02 0.026 055 00 0.108 989 29
35 0.099 401 82−0.027 518 02 0.026 054 94 0.108 989 93
36 0.099 401 82−0.027 517 96 0.026 052 85 0.109 013 58
37 0.099 401 82−0.027 517 85 0.026 049 13 0.109 056 99
38 0.099 401 82−0.027 517 71 0.026 044 08 0.109 117 57
39 0.099 401 82−0.027 517 55 0.026 037 96 0.109 193 02
40 0.099 401 82−0.027 517 36 0.026 030 97 0.109 281 58
41 0.099 401 82−0.027 517 17 0.026 023 27 0.109 381 60
42 0.099 401 81−0.027 516 96 0.026 015 00 0.109 491 74
43 0.099 401 81−0.027 516 75 0.026 006 29 0.109 610 79
44 0.099 401 81−0.027 516 53 0.025 997 20 0.109 737 96
45 0.099 401 81−0.027 516 31 0.025 987 85 0.109 871 95

algebraic approximation that agrees precisely with our numerical estimate. An alternative
analysis provides very strong evidence for the absence of any non-analytic correction terms
to the proposed asymptotic form for the generating function. Finally, we give an asymptotic
representation for the coefficients which we believe to be accurate for all positive integers.

Acknowledgments

We gratefully acknowledge valuable discussions with Ian Enting, useful comments on the
manuscript by Alan Sokal and financial support from the Australian Research Council.

References

[1] Baxter R J 1986J. Phys. A: Math. Gen.192821
[2] Brak R and Guttmann A J 1990J. Phys. A: Math. Gen.234581
[3] Conway A R, Enting I G and Guttmann A J 1993J. Phys. A: Math. Gen.261519
[4] Conway A R and Guttmann A J 1996Phys. Rev. Lett.775284
[5] Delest M P and Viennot G 1984Theor. Comput. Sci.34169
[6] Derrida B 1981J. Phys. A: Math. Gen.14L5
[7] Enting I G 1980J. Phys. A: Math. Gen.133713
[8] Enting I G and Guttmann A J 1985J. Phys. A: Math. Gen.181007
[9] Enting I G and Guttmann A J 1989J. Phys. A: Math. Gen.221371

[10] Enting I G, Guttmann A J, Richmond L B and Wormald N C 1992Random Structures and Algorithms3 445

4876 I Jensen and A J Guttmann

[11] Guttmann A J and Enting I G 1988J. Phys. A: Math. Gen.21L165
[12] Guttmann A J and Enting I G 1988J. Phys. A: Math. Gen.21L467
[13] Guttmann A J 1989Phase Transitions and Critical Phenomenavol 13, ed C Domb and J L Lebowitz (New

York: Academic)
[14] Hughes B D 1995Random Walks and Random Environments, Vol I Random Walks(Oxford: Clarendon)
[15] Jensen I and Guttmann A J 1998J. Phys. A: Math. Gen.318137
[16] Kim D 1988Discrete Math.7047
[17] Kloczkowski A and Jernigan R L 1998J. Chem. Phys.1095134

Kloczkowski A and Jernigan R L 1998J. Chem. Phys.1095147
[18] Knuth D E 1969Seminumerical Algorithms (The Art of Computer Programming vol 2)(Reading, MA: Addison-

Wesley)
[19] Lin K Y and Chang S J 1988J. Phys. A: Math. Gen.212635
[20] Lin K Y and Tzeng W J 1991Int. J. Mod. Phys.B 5 1913

Tzeng W J and Lin K Y 1991Int. J. Mod. Phys.B 5 2551
[21] Lin K Y 1992J. Phys. A: Math. Gen.251835
[22] Moraal H 1994PhysicaA 20391

Moraal H 1994PhysicaA 203103
[23] Nienhuis B 1982Phys. Rev. Lett.491062
[24] Mehlhorn K 1984Data Structures and Algorithms I: Sorting and Searching (EATCS Monographs on Theoretical

Computer Science)(Berlin: Springer)
[25] Pólya G 1969J. Comb. Theory6 102
[26] Temperley H N V 1956Phys. Rev.1031

